
NRL Report 7476

Microprogrammed Control Unit
(MCU)

Programming Reference Manual

JOHN D. ROBERTS, JR.

Information Systems Group
Office of Associate Director of Research for Electronics

August 15, 1972

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release, distribution unlimited.



CONTENTS

Abstract ii
Problem Status ii
Authorization ii
Acknowledgments iii

NRL SIGNAL PROCESSING ELEMENT (SPE) 1

MICROPROGRAMMED CONTROL UNIT (MCU) 2

MCU Architecture 3
MCU Control Word Fields 7

AMIL 9

General Definitions 9
Instructions 10
Memory Operation 11
Adder Op 12
Address Adjust 14
Auxiliary Transfer 15
Condition Phrase 15
Successor 16
I/O Instruction 17

GLOSSARY OF ACRONYMS 18

APPENDIX A - Input/Output Control 19

APPENDIX B -A MIcroprogramming Language
(AMIL) Syntax 26

APPENDIX C - AMIL Key Words 29

APPENDIX D - AMIL Sample Programs and Listings 32

APPENDIX E - AMIL Translator 38

i



ABSTRACT

The Microprogrammed Control Unit (MCU) is a high-speed, user-
microprogrammable, executive, input-output processor and interrupt
handler for the NRL Signal Processing Element (SPE), a part of the All
Applications Digital Computer (AADC).

This report describes the MCU architecture, a new programming
language (AMIL), and its translator. AMIL (A MIcroprogramming
Language) is a FORTRAN-like language which allows MCU users to
write microprograms in a convenient format instead of binary bit pat-
terns. The AMIL translator converts AMIL programs into the micro-
instruction bit patterns which the MCU will execute. This program
marks the start of MCU software development.

PROBLEM STATUS

This is a report on one phase of the problem; work is continuing
on other phases.

AUTHORIZATION

NRL Problem B02-06
NAVAIR Tasks 3F21-241-601 and 2F00-241-601

and
NRL Problem B02-10

NAVELEX Task XF21.241.015.K152, formerly XF53.241.003.K032

Manuscript submitted August 7, 1972.

ii



ACKNOWLEDGMENTS

The architectural design of the MCU described in this report was
performed by J. Ihnat, W. R. Smith, Jr., and the author. Appendix A
was written by Smith.

The original MCU conceptual design and considerable valuable
guidance were received from Y. S. Wu, manager of the Signal Process-
ing Element project, and B. Wald, head of the Information Systems
Group.

iii



MICROPROGRAMMED CONTROL UNIT (MCU)
PROGRAMMING REFERENCE MANUAL

NRL SIGNAL PROCESSING ELEMENT (SPE)

The MCU (Microprogrammed Control Unit) is a high-speed, executive, input-output
(I/O) processor and interrupt handler for the NRL Signal Processing Element (SPE), a
part of the All Applications Digital Computer (AADC). It is the job of the MCU to super-
vise all SPE elements and to direct and initiate all data transfers between these ele-
ments. Referring to Fig. 1, one can see that the MCU directs the SPAU (Signal Process-
ing Arithmetic Unit) and the CC's (Channel Controllers) via the Z bus, and communicates
with up to 8 buffer memories over its two channels to the SCU (Storage Control Unit). To
better understand the importance of the MCU, one needs to briefly examine the functions
of the other SPE elements.

Signal Processing Arithmetic Unit (SPAU) - The SPAU is an extremely high-speed,
special-purpose arithmetic unit which is entirely self-contained and capable of doing a
Fast Fourier Transform on n points in only n/2 log2 n basic clock cycles of 300 nsec
each. This action is initiated over the Z bus by the MCU but is self-sustained and

Fig. 1 - SPE system configuration

1



J. D. ROBERTS, JR.

requires no further MCU intervention until it has finished. Inherent in this capability is
the SPAU's ability to generate buffer memory addresses.

Additional functions of the SPAU include filtering and high-speed multiplies. Be-
cause of the high-speed capability of the SPAU, it has been supplied with two channels
into the SCU and, therefore, the buffer memories.

Storage Control Unit (SCU) -It is the duty of the Storage Control Unit to resolve and
assign all buffer memory requests during each 150-nsec clock cycle of the system.
Eight channels each with a different priority enter the SCU. Each one is capable of re-
questing a specific buffer memory every system clock cycle, since the cycle time for any
buffer is also only 150 nsec. The SCU must resolve all of these requests and assign the
available buffer memories according to the request priorities. If duplicate buffer re-
quests occur, the lower priority request waits. The priorities are obtained by physical
position of the channel connection with the SCU.

Channel Controller (CC) - Channel controllers are included to allow devices to send
and receive data from buffer memories without having to interrupt the MCU for each
transmitted character (byte). When the MCU wants to perform an I/O operation, it sends
out a series of signals over the Z bus which causes the CC connected to the requested
device to respond with the status of said device. Upon receipt of an acceptable status,
the MCU then sends the command and necessary data to the CC. The CC then bears the
responsibility for completing the I/O requested. It must set up the necessary flags,
counters, and status registers so that it can multiplex data from the current device along
with devices it is already servicing. The CC requests only byte transfers between itself
and unbuffered devices (UD) and must therefore do the buffering before it generates the
appropriate buffer address and requests a memory cycle from the SCU. In summary,
the CC is a buffered multiplexor or selector channel which sends and receives data from
buffer memories and sends and receives commands and status information from the
MCU.

MICROPROGRAMMED CONTROL UNIT (MCU)

The MCU is the microprogrammable executive for the SPE. Users will write micro-
programs (or have them written) which will direct and control all elements of the SPE.
It will be the responsibility of the MCU to initiate and keep records of all I/O operations.
Concurrently, it may be doing preprocessing on a block of data before requesting action
from the SPAU. Similarly, it may have to do postprocessing of SPAU output before
outputting the results or sending them back to the SPAU for yet another operation. In
addition to these functions, the MCU must service the interrupts from the SPAU, CC's,
and other MCU's, if any. To handle all of these responsibilities, it is necessary for the
MCU to do many things at a very fast rate. As a result, the MCU operates at a 150-nsec
clock cycle time, with the ability to do all operations, including buffer memory accesses,
within one cycle. To achieve this high rate of control, the MCU operates from a single-
format, 64-bit-wide, microprogram control word. From this wide control word, we
achieve benefits such as increased speed due to the highly decoded fields and high hard-
ware utilization (and, therefore, performance improvement) from the ability to control
all of the registers and gates during each cycle.

We have seen that the MCU is the SPE controller, and that the microprogram con-
trol words control the MCU. Let us now examine the MCU architecture which is con-
trolled by these microprograms.

2



NRL REPORT 7476

MCU Architecture

To obtain fast basic clock rates, the MCU must be lean, but to do the required work
it must have sufficient support hardware. These are the requirements which dictate the
design as shown in Fig. 2 and the timing in Fig. 3.

All data entering or leaving the MCU travels over one of two channels, Bus A or
Bus B, to the buffer memory. Each channel can be used for one memory operation dur-
ing every MCU cycle due to the matched speed of the MCU and buffer memories. MCU
register and data path widths are given in Table 1.

Table 1
MCU Register and Data Path Widths

Register

LSA
LSB
CTR
SAR
CSAR
ACSAR
z

BARA
BARB

FSDR

Data Path

Local Store input
Local Store address

Bus A
Bus B
FSU output
Adder inputs
Adder output
Barrel switch input
Barrel switch output
Z output

Width

16
16
16

4
12
12
16

16
16

32

Width

16
4

32
32
16
16
16
16
16
16

Comment

Can shift from 0 to 15 bits
Control Store addresses can be from 0 to 4095

Left Right

3 I 2iIL 1

3 - Buffer Address (BM 0 to 7)
12 - Word Address to 32 bit word
1 - Half Word Address - which 16 bits

of above 32 bit word
Able to capture full 32 bits of BUSA

Comment

Bus A and Bus B inputs are only 16 bits
Control Store fields or least significant 4 bits

of BARA or BARB

Field selected is right justified
Leading zeros are inserted where necessary

All sources for Z output receive only the right
most number of bits desired.

3



J. D. ROBERTS, JR.

< +1~~~L LU Co

UL Cd~~~~~~~~~~~~~~~~~~~~~~~~C

0~~~~~~
N 13313~S ' 

0
C.)~~~~~~C <~~~~~~~~~~~~

LU~~~~~~L

C., 0~~~~~~~~~~~~~~ Cb 

Ci) rr ~~~~~~~~~- N~~~~~J~) 
N <~~~~~~~~~~~

cc w U. ui Lu w C.)~~~~~~~~~~~~~~~~~~C.S 0NI 1 w.Q w-aJ -

Lu~ ~~~~~L
0 c 

-J ~~~~~J 
M cp < ST-l- Lu cc~ ~~~~~CO1-0 I-~~~~~~~ -

A



NRL REPORT 7476

1. SELECT DATA
FOR BUFFER
WRITE

2. BUFFER AD-
DRESSEES
READY

3. LOCAL STORE
SOURCE AD-
DRESSES SET

4. SET CSAR AND
ACSAR FOR
NEXT INSTRUC-
TION BASED ON
OLD CYCLE

, CONDITIONS

0 NSEC

1. START BUFFER
WRITE

2. DO INC/DEC OP-
ERATIONS ON
CTR, BARA, ETC.

3. CSAR AND
ACSAR READY-
READ IN NEXT
CONTROL
STORE WORD

4. ALU INPUTS
, READY

i
I
P/2

1. ALU OR
SHIFTER OUT-
PUT READY

2. Z RECEIVES
ALU/SHIFT

3. INTERRUPT
CONTROL UNIT
RECEIVES DATA

4. SELECT DESTI-
NATIONS FOR Z

5. BUFFER INPUT
,READY

I

NEXT
CONTROL
STORE WORD
AVAILABLE

I
P/3

1. START SETTING
COMMAND REG-
ISTER WITH
NEXT CS WORD

2. STORE Z INTO
DESTINATIONS

3. CHECK FOR
BUFFER MEM-
ORY REQUESTS
IN NEXT CYCLE

PA4

1. BUFFER MEM-
ORY REQUESTS
GRANTED

2. COMMAND REG-
ISTER DECODED
AND TEST CON-
DITIONS AVAIL-

,ABLE

I 150 NSEC

P/1

*- MCU BASIC CLOCK CYCLE -

Fig. 3 - MCU timing diagram

Associated with each 32 bit bus is an address register. Bus A Address Register
(BARA) goes with Bus A and, similarly, Bus B Address Register (BARB) goes with Bus
B. Each register has 16 bits, composed of 12 bits of word address, 3 bits of buffer ad-
dress, and 1 bit for half-word addressing since each buffer memory word read out and
transferred is 32 bits wide. To aid in buffer memory addressing, each address register
has an incrementer and decrementer associated with it.

To store data from these busses or intermediate results generated by the MCU,
there are two small memories, Local Store A and Local Store B (LSA and LSB). Each is
16 words by 16 bits with the capability of being both read out and stored into during the
same cycle. Two control store fields are associated with each local store to supply ab-
solute addresses for reading and writing into each local store.

For indirect (computable) addressing, a default scheme is incorporated which allows
the least significant four bits of the adjacent bus address register (BARA with LSA and
BARB with LSB) to supply the local store address. This occurs whenever the control
store field address is zero.

To perform basic arithmetic and logical operations, the MCU has both an adder and
a shifter. The adder can perform 16 basic operations including add, subtract, and full
Boolean operations. The shifter is a barrel switch which allows shifting of the adder
output by any number of bits within 20 nsec. The number of bits to shift is specified by
the Shift Amount Register (SAR).

Output from the adder/shifter then goes to the 16-bit Z register which can then be
stored back into local stores, buffer address registers, and other registers in the same
cycle.

ACTION

TIME

CLOCK PHASE P/1

l

5

I

J



J. D. ROBERTS, JR.

One support register, the SAR, has already been mentioned. Another is the Counter
(CTR) which can be loaded with a literal value and counted up to overflow which can be
checked and thus cause appropriate action. Other conditions that can be checked are
based on results of the last adder operation and include adder overflow, result equal to
zero, Z register most significant bit set (sign), and Z register least significant bit set
(odd or even, flag, etc.).

One may conditionally or unconditionally alter the instruction execution sequence
which is controlled by the test logic and next address selection logic. Two registers are
provided for control store address selection. The Control Store Address Register
(CSAR) is the only one which addresses the writable Control Store. It can be set from
the other address selection register, the Alternate Control Store Address Register
(ACSAR), the literal field of the control word, or from its incrementer. In addition to
these, the Interrupt Control Unit (ICU) can set the CSAR to allow for interrupt handling.
At the beginning of each cycle, the CSAR contains the address of the currently executing
control word. Under direction of the new control word, the CSAR and ACSAR are selec-
tively altered from one of eight choices. For example, in normal sequential program
stepping, the CSAR is incremented during each clock cycle and the ACSAR is unchanged.
For subroutine calls the ACSAR retains the return address (the old CSAR + 1) and the
CSAR holds the address of the subroutine.

The Interrupt Control Unit (ICU) mentioned earlier contains no programmable ele-
ments. Upon receipt of an interrupt of higher priority than the current level executing
in the MCU, the MCU operations are suspended, all necessary registers are saved,
and the appropriate interrupt handling routine address is passed to the CSAR. This rou-
tine executes then restores the MCU to its preinterrupt status. The user will be unaware
of this action except for deviations in expected execution times.

I/O action is initiated by the MCU by sending out an I/O command over the Z bus.
The programmer must select the proper command operation code, count, device address,
buffer address, etc., to be sent out on the Z bus. This process will be discussed further
in Appendix A.

The last element of the MCU is the Field Select Unit (FSU). This device allows the
programmer to address fields within a word. As data are brought in over bus A, the
programmer may specify that during any transfer the 32 bits of data also be put into the
Field Select Data Register (FSDR). In subsequent cycles after this operation, the user
may select one of seven predefined fields from the FSDR as an operand for the adder.
The output will be a 16-bit value with the selected field right justified with leading
zeroes.

For example, the FSDR might contain two 16-bit data words (4 bytes) and the field
definitions could be on byte boundaries (4) or word boundaries as shown below.

FSDR

Byte 1 Byte 2 Byte 3 Byte 4

8 bits 8 8 8

FSU (1) implies byte 1 right justified with 8 leading zeroes

FSU (2) implies byte 2

FSU (3) and (4) implies byte 3 and 4

FSU (5) implies byte 1 and byte 2 (left half, 16 bits)

FSU (6) implies byte 3 and byte 4 (right half, 16 bits)

6



NRL REPORT 7476

With this byte addressing capability, the MCU in many cases will only need to do one
memory operation for every 4 bytes of data, thus increasing the effective memory band-
width.

One important attribute of the MCU is flexibility. This is achieved as a result of
microprogrammed control. The MCU is controlled from a 4096- by 64-bit Control Store.
Each 64-bit-wide word is a single-format highly decoded command. With a single-
format, as compared to a multiple-format machine, each bit or series of bits must acti-
vate the same paths during every MCU cycle, which reduces the hardware required for
control. Highly decoded fields increase the MCU's speed by the nontrivial amount of
time it takes to decode highly encoded fields. We shall now examine the micropro-
grammed control.

MCU Control Word Fields

The 64-bit MCU control word is composed of 17 fields as given below:

Field Position
I.D. (bit #) Function

COND 1-3 Condition test select

NOT 4 True or False of condition

NEXT 5-7 Next control store address selection
SAUX 8-10 Set auxiliary register

SARA 11-12 Source for buffer address register A (BARA)

SARB 13-14 Source for buffer address register B (BARB)

SLSA 15-16 Source for Local Store A input

SLSB 17-18 Source for Local Store B input

WBUF 19-21 Write Buffer Selection

FSU 22-24 Field Select Unit output selection

ADIN 25-28 Adder input selection

ADOP 29-32 Adder/Shifter Operation selection

SAAL 33-36 Source Address Literal for LSA

SBAL 37-40 Source Address Literal for LSB

DAAL 41-44 Destination Address Literal for LSA

DBAL 45-48 Destination Address Literal for LSB

LIT 49-64 Literal (all-purpose data, address)

Each of these fields is further broken down into bit responsibility by the following chart.
(Code point actions are summarized using key words of AMIL, see Appendix C.)

7



J. D. ROBERTS, JR.

MCU Control Field Definitions

COND(1) NOT(2) NEXT(3) SAUX(4) SARA(5)

0 None 0 True 0 STEP 0 None 0 None
1 MOST 1 False 1 SKlP 1 ACSAR = LIT 1 -1
2 LEAST 2 SAVE 2 ACSAR = Z 2 +1
3 ADROV 3 CALL 3 SAR = LIT 3 Z
4 CTROV 4 JUMPL 4 SAR = Z
5 ZERO 5 JUMPA 5 CTR = LIT
6 extra 6 JUMPZ 6 CTR = Z
7 I/O 7 INTRET 7 extra

SARB(6) SLSA(7) SLSB(8) WBUF(9) FSU(10)

0 None
1 BUF(BARA)
2 BUF(BARB)
3 Z

0 None
1 BUF(BARA)
2 BUF(BARB)
3 Z

0 No Write
1 BUF(BARA)=
2 BUF(BARB)=
3 BUF(BARA)=
4 BUF(BARB)=
5 BUF(BARA)=
6 BUF(BARB)=
7 BUF(BARA)=

BUF(BARB)=

LSA
LSA
LSB
LSB
z
Z
LSA
LSB

0
1
2
3

4
5
6
7

FSDR =
Field 1
Field 2
Field 3
Field 4
Field 5
Field 6
Field 7

BUF(BARA)

ADIN(11)
Left Right

0 LSA
1 LSA
2 LSA
3 LSA
4 LSB
5 LSB
6 LSB
7 LSB
8 BARA
9 BARA

10 BARB
11 BARB
12 FSU
13 CTR
14 ACSAR
15 SAR

LIT
FSU
BARB
LSB
LIT
FSU
BARB
BARA
LIT
LSA
LIT
BARA
LIT
LIT
LIT
LIT

ADOP(12)

0 No Op
1 Z= L +R
2 Z= L - R
3 Z= R - L
4 Z= L + 1
5 Z=L-1
6 Z =L
7 Z=L
8 Z=R
9 Z= L RR

10 Z= L AND R
11 Z =LXORR
12 Z= L EQVR
13 Z = L Left Shifted
14 Z = L Right Shifted
15 Z = L Circularly Shifted

SAAL(13)

0 Use BARA register
to select LSA (i)

1 to 15 Select LSA reg.
specified

SBAL(14)

0 Use BARB register
to select LSB(i)

1 to 15 Select LSB
register
specified

DAAL(15)

Same as SAAL

DBAL(16)

Same as SBAL

LIT(17)

A 16 bit integer
value

If a user were required to set each control word bit by bit according to the field
definitions just given, it is obvious how tedious microprogramming would be.

For this reason, a new language, AMIL (A MIcroprogramming Language), has been
created to allow users to write microprograms in a FORTRAN-like register transfer

0 None
1 -1
2 +1
3 Z

8



NRL REPORT 7476

language as opposed to ones and zeroes. As a result, users will now be able to write
AMIL programs and allow the translator to convert his program into MCU bit patterns.
This translator has been developed and is currently operational on a time-sharing serv-
ice available to NRL.

The remainder of this document will describe the syntax of AMIL and its semantics
as prescribed by the translator.

AMIL

AMIL is syntactically described using Backus-Naur Form (BNF) with the following
additions:

1. { } Left and right braces are used to encompass an English language definition
of a syntactic category.

2. *{ }* Left and right asterisk-braces are used to encompass a string of syntactic
categories which may appear in any order. For example,

(cat) :: = *{(catl> (cat2)1*

implies (cat) :: = (catl) (cat2) (cat2) (catl)

AMIL is designed to give the user many of the benefits one receives from high level
languages, such as free field coding and symbolic next address selection, but with the
desired constraint imposed that MCU registers be named explicitly to make sure the
programmer is intimately involved with the facilities.

An AMIL program is composed of any number of instructions up to 4096 followed by
an END psuedostatement. Each instruction consists of combinations of up to 7 different
general types. These types are memory operations, adder operations, address adjust-
ment, auxiliary transfers, condition phrases, successor specification, and I/O instructions.

After giving some general definitions, each of the types will be defined. The com-
plete AMIL syntax is given in Appendix B and key words are listed in Appendix C. Ap-
pendix D includes two sample programs and their output from the AMIL translator, while
Appendix E gives a complete list of error messages generated by the translator.

General Definitions

Syntax:

(Program) :: = (Body) (End Line)

(Body) :: = (Instruction) I (Body) (Instruction)

(Instruction):: = (Label Phrase) *{<Memory Operation) (Adder Op) (Address Adjust)
(Auxiliary Transfer> (Condition Phrase) (Successor)
(I/O Instruction)}* $

(Label Phrase):: = (Label) I (Empty)

(Label):: = (Letter) I Label) (Letter) I (Label) (Symbol) (Label) (Digit)

(Letter):: = AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
(Digit) :: = 0111213141516171819

9



J. D. ROBERTS, JR.

(Symbol):: = +1-1/1(1)1=1,1 

(Empty) :: = {the absence of anything}

(End Line):: = END $

Semantics:

A program can consist of up to 4096 instructions followed by an END pseudoinstruc-
tion. Each instruction is entered via TTY one line at a time with an "*" ending each
line which is not the last of an instruction. A "$" is used to signal end of instruction
and must always be present. Any characters after an "" or "$" are treated as com-
ments and thus cause no action except for their listing. Acceptable letters and symbols
are limited because the translator accepts only CDC standard FORTRAN characters.
The string END" is a key word, and like all key words, it must not contain any embedded
blanks. (Empty) is the null category and is always considered to be present.

To enter a comment statement which occupies an entire line, the line must start with
an asterisk.

Instructions

Syntax:

(Instruction):: = (Label Phrase) *{(Memory Operation) (Adder Op) (Address Adjust)
(Auxiliary Transfer> (Condition Phrase) (Successor)
(I/O Instruction)}* $

(Label Phrase) :: = * (Label) I (Empty)

KLabel) :: = (Letter) | (Label) (Letter> I (Label) (Symbol) I (Label) (Digit)

Semantics:

An instruction starts with an optional label phrase which is a "." followed by a
label. A label is a string of up to 9 characters which must begin with a letter and con-
tain no embedded blanks. Instructions are translated into consecutive control word loca-
tions starting with zero. Thus, the address where each instruction will reside is known
at translation time. When a label is preceded by "." this causes the translator to save
the current control store address and the label in a table. Any subsequent reference to
this label causes the associated address to be substituted. This allows programs to
refer to addresses symbolically.

After the optional label phrase, one can include any number of the 7 categories
(memory op, adder op, etc.) in any order. It is important to note that their order has no
relation to when they are executed within an MCU cycle. Examples:

.LOOP INPUT (BUF(BARA), LSA (7)) $

.LOOP+1 OUTPUT (LSB (s), BUF(BARB)) $

.LOOP+2 LSB (9) = LSA (3) + 425 $
INC BARA, LSA (4) = LSA (4) +1, JUMP TO LOOP $
INPUT (BUF(BARB), LSB (1)), INC BARA, *

LSA (6) = LSB (7) + FSU (3), SKIP $

10



NRL REPORT 7476

Memory Operation

Syntax:

(Memory Operation) :: = *{(Buffer Read A to LSA) (Buffer Read A to LSB>}* 
*{(Buffer Read A to LSA) (Buffer Read B to LSB> *I
*{(Buffer Read A to LSA> (Buffer Write B> )*I
*- (Buffer Read A to LSB) (Buffer Read B to LSA> }*|
*{(Buffer Read A to LSB) (Buffer Write B)}*l
*{(Buffer Read B to LSA> (Buffer Read B to LSB> }*l
*{(Buffer Read B to LSA) (FSU Register Set) }*l
*- (Buffer Read B to LSA) (Buffer Write A> }*I
*-(Buffer Read B to LSB> (FSU Register Set> 1*
* (Buffer Read B to LSB> (Buffer Write A) )*l
* (FSU Register Set) (Buffer Write B)}*l
OUTPUT (LSA(LS Subscript), BUF(BARA)) OUTPUT (LSB (LS

Subscript), BUF(BARB))I
OUTPUT (LSB (LS Subscript), BUF(BARB)) OUTPUT (LSA(LS

Subscript), BUF(BARA))I
(Empty)

(Buffer Read A to LSA):: = INPUT (BUF(BARA), LSA(LS Subscript)) | (Empty)

(Buffer Read A to LSB):: = INPUT (BUF(BARA), LSB (LS Subscript)) | (Empty)

(Buffer Read B to LSA):: = INPUT (BUF(BARB), LSA(LS Subscript)) | (Empty)

(Buffer Read B to LSB):: = INPUT (BUF(BARB), LSB (LS Subscript)) (Empty>

(Buffer Write A):: = OUTPUT ((Buffer Write Source), BUF(BARA)) | (Empty)

(Buffer Write B):: = OUTPUT ((Buffer Write Source), BUF(BARB)) | (Empty)

(Buffer Write Source) :: Z LSA (LS Subscript) I LSB (LS Subscript)

(FSU Register Set):: = INPUT (BUF(BARA), FSDR) (Empty)

(LS Subscript):: = ((Register Number))

(Register Number) :: = FSU field) | 819110111 121131141151 BARA I BARB

(FSU field) :: = 0 1 121314151617

Semantics:

During each MCU cycle up to two memory transfers can occur with the following
limitations. There may not be conflicting uses of sources, destinations or address reg-
ister selection. Each memory operation starts with the key word dictating the direction
of the transfer (i.e., INPUT or OUTPUT) followed by an opening parenthesis, source,
destination, and the closing parenthesis. The operation reads like an English language
description of the transfer if one substitutes the word "from" for the opening parenthesis
and "to" for the comma separating source and destination.

INPUT (BUF(BARA), LSA (7)) becomes INPUT from BUF(BARA) to LSA (7).
"BUF(BARA)" implies the buffer memory and its address which is pointed to by BARA.
"LSA (7)" means Local Store A register seven. The source for an INPUT operation is
BUF(BARA) or BUF(BARB) and the destination LSA, LSB, or FSDR.

11



J. D. ROBERTS, JR.

FSDR as mentioned earlier is the Field Select unit Data Register. The only excep-
tion about duplicate address register selection occurs here. One may INPUT from
BUF(BARA) to FSDR and one other destination.

Sources for OUTPUT operations can come from Z, LSA, or LSB contents at the be-
ginning of the current cycle. Destinations can be only buffer memories as specified by
BUF(BARA) and BUF(BARB). Note the form of the special case where two OUTPUTS
can occur. Memory operations can occur by themselves as instructions or anywhere
inside an instruction. Local Stores are addressed in two ways, directly and indirectly.
Directly means the register number is given. Indirectly means the register number is
specified by the low-order four bits of an address register. For Local Store A, BARA is
used and for Local Store B, BARB.

Examples:

(Legal -. INPUT (BUF(BARB), LSA (10)), OUTPUT (LSB (5),

BUF(BARA)) $ legal
INPUT (BUF(BARA), LSB (15)), INPUT (BUF(BARB),

LSA (5)) $ legal

(Illegal-) INPUT (BUF(BARA), LSA (5)), OUTPUT (LSB (7),

BUF(BARA)) $ illegal (duplicate use of BARA)

INPUT (BUF(BARA), LSA (6)), INPUT (BUF(BARB),

LSA (3)) $ illegal (duplicate use of LSA)

Adder Op

Syntax:

(Adder Op) :: = <Destination) = Left Input> (Destination) = (Right Input) I

(Destination> = (Left Input> (Unary Operator) I (Destination) = Z I

(Destination> = (Right Input> (Binary Operator) (Left Input> 

(Destination) = (Left Input) (Binary Operator) (Right Input> I <Empty>

(Left Input) BARA BARB I SAR I CTR ACSAR I LSA (LS Subscript) I

LSB (LS Subscript> I FSU (FSU Field>)

(Integer) = (Digit) I (Integer) (Digit)

(Right Input>:: = BARA I BARB I (Integer) I LSB (LS Subscript) | COMP1

(Integer> I FSU ((FSU field)) I COMP2 Integer)

(Unary Operator) :: = +1 I -1 I COMP I LEFT I RIGHT I CIRC

(Binary Operator) :: = + I - I OR I AND I XOR I EQV

12



NRL REPORT 7476

<Destination) = (Regular Destination I
(Destination), (Regular Destination) 

(Destination>, <Auxiliary Destination>

(Regular Destination):: = Z I BARA I BARB I LSA LS Subscript I LSB (LS Subscript>

Semantics:

Adder operations involve one or two operands, an operation and finally one or more
destinations for the result. The symbol "=" means "is replaced by" as in FORTRAN.
Unary operations occur only on left inputs, but all registers can be a left input. The
unary operation "COMP" means take the one's complement of the left input. "LEFT"
and "RIGHT" refer to shifting (end-off zero fill) the left input by the number of bits
specified by the Shift Amount Register (SAR) in the direction given by the mnemonic.
"CIRC" requests a left-circular shift of SAR bits. To shift right-circular SAR bits,
simply complement the SAR value and shift left circular.

Binary operators include two's complement addition and subtraction along with the
four basic Boolean operations.

Left and right inputs may appear in any order except for subtraction where order is
important. When an (Integer) is specified in one of the three ways (i.e. (Integer>,
COMP (Integer), or COMP2 (Integer>) it is imperative to remember that integers will
be stored in a single literal field of the control word. It is, therefore, impossible to
specify more than one integer within an instruction. COMP and COMP2 cause the in-
teger which follows to be complemented, as above, before being inserted into the LIT
field of the control word.

Although the syntax appears to allow any combination of Left and Right adder inputs,
this is not the case and only the 16 combinations given below are legal. Any other com-
bination will result in a diagnostic.

Left Right

LSA(i) Integer
FSU(k)
BARB
LSB(j)

LSB(j) Integer
FSU(k)
BARB
BARA

BARA Integer
LSA(i)

BARB Integer
BARA

FSU(k) Integer

ACSAR Integer

SAR Integer

CTR Integer

13



J. D. ROBERTS, JR.

This configuration has all inputs on the left at least once, thus allowing each input
to be

1. Shifted

2. Transferred to any legal output destination

3. Complemented.

The adder output can go to one or more destinations. AMIL requires that the first
destination be either Z, BARA, BARB, LSA, or LSB. Once one of these is specified, any
or all of the remaining destinations may be specified including a choice of one from
either of ACSAR, SAR, or CTR.

If the operation chosen is simply a transfer, then plus zero is the implied operation.
This need not be explicitly written since this is the default operation.

Examples:

Legal LSB (3) = LSA (4) + LSB (5) $
LSA (1), SAR = BARA + 10 $ (note - two destinations)
ACSAR = LSB (12) $(+ 0 need not be included)
LSA (1) = LSA (1) or LSB (7)
Z = LSA (9) + 65535 $
LSB (5) = LSB (5) COMP $ (LSB (5) is one's complemented)
BARB = LSB (10) + COMP 36 $ (6 is added to LSB (10))
LSA (3) = LSA (3) LEFT $ (LSA (3) is Left Shifted SAR bits)
LSA (1), LSB (2), BARA, BARB, ACSAR = LSA (5) EQV LSB (2) *

$ (many Destinations)
BARA = BARA + 100 $

Illegal SAR, LSA (1) = BARA + 10 $ (Destinations in improper order)
LSA (7) = CTR + 25 $ (Illegal Left-Right combination)

Address Adjust

Syntax:

Address Adjust (NC) (DEC) 'INC), DEC) (INC), INC)

(DEC>, (INC> (DEC>, (DEC)| (Empty)

(INC> = INC BARA INC BARB

DEC = DEC BARA DEC BARB

Semantics:

During the latter part of an MCU cycle the address registers BARA and BARB can
be adjusted by either an increment (IC) or decrement (DEC) on either or both regis-
ters. The tin.ing is mentioned to show there is no conflict with memory operations
whose use of the address registers causes their contents to be captured early in the
cycle, much before an adjustment.

It is not possible, however, to adjust BARA or BARB and also store the results of an
adder operation in the same register in the same cycle.

14



NRL REPORT 7476

Examples:

Legal INPUT (BUF(BARA), LSA (2)), INC BARA, DEC BARB $
DEC BARA, DEC BARB, OUTPUT (LSB(3), BUF(BARB)) $
INC BARA, LSA (6) = LSA(5) + BARB $
INC BARA, INC BARB $

Illegal INC BARA, BARA = LSA(5) + LSB(6) $
INC BARA, BARB $

Auxiliary Transfer

Syntax:

(Auxiliary Transfer) = Auxiliary Destination) = (Auxiliary Source) ( (Empty)

<Auxiliary Source) :: = (Literal I Z I COMP1 (Integer) I COMP2 (Integer)

(Literal) :: = Integer) | (Label)

<Auxiliary Destination) = ACSAR SAR I CTR

Semantics:

It is possible in the MCU to make an additional data transfer concurrently with an
adder operation. This is normally used to put constants (counts, addresses, or shift
amounts) into one of three registers but could be used to store the last adder operation's
result, Z, in the selected register. If an adder operation occurs in an instruction with Z
also being selected as the source for an auxiliary transfer, then Z is the result of this
adder operation. The following instructions illustrate this. They would cause identical
responses in the MCU.

1. LSA(7) = LSA(5) AND LSB(12), CTR = Z $

2. LSA(7), CTR = LSA(5) AND LSB(12) $

COMP1 and COMP2 have the same meaning as before. One should recall that labels are
always resolved into integer addresses and stored in the literal field of the control word
with only one allowed per instruction. If one had an unused literal field in an instruction
and he wanted to set up a jump address in ACSAR, he could use the auxiliary transfer
using the label name. When he wanted to jump the address of the label he would simply
"Jump To ACSAR" which requires no literal field. (See "Successor" discussion.)

Condition Phrase

Syntax:

(Condition Phrase>:: = IF (Not> (Condition> (Empty>

<Not) :: = NOT I (Empty)

(Condition):: = LEAST I MOST I ADROV CTROV ZERO

15



J. D. ROBERTS, JR.

Semantics:

The only part of an MCU instruction which is actually conditional is the next address
selection. All operations go on as normal except that the "successor" specified is se-
lected only if the "condition and not" combination is satisfied; otherwise a default step
occurs. The conditions have the following meanings:

IF LEAST- If the least significant bit of Z from the last adder operation (a previous
cycle) is set (i.e. one)

IF NOT LEAST- If least significant bit of Z is zero

MOST- Most significant bit of Z from last adder Op

ADROV- Adder overflow on the last adder Op

CTROV- Counter (CTR) overflow after the last counter increment which occurs
automatically and only by checking for CTROV

ZERO- Result of the last adder operation was zero.

From the above discussion, it would seem logical and orderly to include the next
address selection (Successor> immediately following (Condition Phrase>, but it is not
required.

Examples:

Instruction
LSA(7)=LSA(7) + 1

IF LEAST JUMP TO 13
LSA(7)=LSA(7)+1

LSA(7)=LSA(7)+2

LSB(5)=LSA(7)

$Assume LSA(7)=O initially

$Least is set from 10 and
$LSA (7) now is 2

$Not executed if LSA(7) is
even

$LSB(5)=2 in our case

Successor

Syntax:

(Successor) :: = STEP I SKIP I SAVE | ( Call ) I INTRET I (Jump)

(Jump) :: = JUMP TO (Jump Destination)

(Call) :: = CALL (Literal)

(Jump Destination) :: = (Literal) I ACSAR Z

Semantics:

A successor field may always appear whether a condition is present or not. If no
condition is present the next address selection is unconditional and always occurs. One
can choose the next address from eight possibilities.

Address
10

11

12

13

16



NRL REPORT 7476

Two registers are involved in addressing the control store. The CSAR is the work-
horse which is incremented under normal conditions to create the default program se-
quencing. The ACSAR is used to hold return address or jump addresses. The following
chart shows the effect of each instruction on the two registers.

Successor Next Instruction Next CSAR Next ACSAR

STEP CSAR+1 CSAR+1

SKIP CSAR+2 CSAR+2 -----

SAVE CSAR+1 CSAR+1 CSAR+1

CALL CS Literal CS Literal CSAR+1

JUMP TO ACSAR ACSAR ACSAR -----

JUMP TO Literal CS Literal CS Literal -----

JUMP TO Z Z z -----

INTRET CSAR from interrupt stack CSAR from stack -----

Upon encountering an interrupt of high enough priority, the MCU automatically
pushes the current CSAR into a stack and generates an address for the appropriate in-
terrupt handling routine. When a return to preinterrupt status is desired, the INTRET
successor is specified to pop the stack and restore the CSAR for normal sequencing.

Examples:

IF MOST JUMP TO ERROR $ Jump to address error if Z most is set

LSB(7) = LSA(6) + LSB(5), CALL MULT $ call subroutine mult

I/O Instruction

Syntax:

(I/O Instruction) = I/O (LS Subscript), (Literal)) I
(Empty)

Semantics:

I/O, in the sense of the syntax above, is dealing with devices other than buffers. At
the current time (7/1/72), I/O will be handled in the following fashion. A programmer
will assemble an I/O control word in LSA which will specify device, address (I.D.) op
code, etc. If more information (or data) is required, it should be in Z. The programmer
then simply includes the I/O command with the correct Local Store A subscript in his
instruction (without a condition phrase) and the contents of LSA(i) will be placed on the Z
bus. At this point the MCU waits for an acknowledge which means the command has been
accepted, completed if just a status check, or rejected. In the latter case, the acknowl-
edge clocks the status into Z and the MCU will automatically jump to the address in the
literal field. In short, the command from Local Store comes from the register specified
by (LS Subscript) and the Reject address comes from Literal>. For a further expla-
nation, see Appendix A.

17



J. D. ROBERTS, JR.

Example:

I/O (12, Bombout) $ Send out an I/O command with control from
LSA(12) - if rejected jump to address Bombout"

I/O (3, 1273) $ Control = LSA (3), Reject = address 1273

GLOSSARY OF ACRONYMS

Acronym

AADC

AMIL

BORAM

Cc

DC

DMA

MCU

SCC

SCU

SPAU

SPE

UD

Meaning

All Applications Digital Computer

A MIcroprogramming Language

Block Oriented Random Access Memory

Channel Controller

Device Controllers

Direct Memory Access

Microprogrammed Control Unit

Selector Channel Controllers

Storage Control Unit

Signal Processing Arithmetic Unit

Signal Processing Element

Unbuffered Device

18



Appendix A

INPUT/OUTPUT CONTROL

ORGANIZATION

There are two types of input/output (I/O) channels in the SPE: Direct Memory Ac-
cess (DMA) buffered channels and a single unbuffered channel called the Z bus. Eight/
sixteen buffered channels enable high-speed data transfer between buffer memories and
system devices or MCU's. The Z bus allows direct communication under MCU control
and on a word-by-word basis between the Z register of an MCU and all devices connected
to the Z bus. The Z bus also enables direct MCU-to-MCU communication.

Figure Al shows an SPE configuration with I/O system elements and interconnec-
tions.

All buffered channel communications pass through the Storage Control Unit (SCU).
It is the responsibility of the SCU to manage buffer memory requests originating from
MCU's, SPAU's, and system channel controllers. Devices which access buffer memory
over buffered channels are interfaced to the buffered channels by Selector Channel Con-
trollers (SCC). SCC s also interface with the Z bus and are responsible for interpreting
device requests coming over the Z bus from MCUts. These requests originate in the
form of MCU I/o instructions and can call upon an SCC to initiate various device I/O
operations over its buffered channel interface.

The SCCts are intended to be standard I/O elements interfacing between buffered
channels and Device Controllers (DC). DC's interface between SCC's and I/o devices
and must be tailored to meet the interface requirements of a particular device type.
DC's interface to SCC's over Z-bus-compatible connections. This allows a DC to con-
nect directly to the Z bus for direct unbuffered communication with an MCU or to connect
to an SCC for buffered channel communication.

SCCIs and DCts can request MCU action via interrupt lines provided in the MCU's
for such purposes. Separate SCC's or DC's sharing a single interrupt line must have
hardware to resolve competition among the units for interrupt service.

An MCU generating an I/O request addressed to another MCU for the purpose of
MCU-to-MCU communication causes the addressed MCU to raise an internal interrupt
line. An I/O acknowledge instruction by the interrupted MCU completes the data trans-
fer over the Z bus.

UNBUFFERED CHANNEL

The MCU exchanges commands and unbuffered data with devices over a bidirectional,
byte-multiplexed channel called the Z bus. The channel can be interrupt driven with in-
formation transferred from/to the Z register upon execution of an I/O instruction. There
is but one Z bus regardless of the number of MCUs a system may contain. MCU's are
in charge of Z bus usage and resolve Z-bus access among themselves on a first-come,
first-served basis.

19



J. D. ROBERTS, JR.

cn 0~~~~~~~~~~~~~~

0~~~~~
CC -J LU~~~~~~~~~~~~~~~~~~~C

NU b

r.L

CO

N

20

-J

LU

.

0
0a

LL
LL

co

a:>
U. O

LnL 

LL M:> 
CO E



NRL REPORT 7476

Devices wishing Z-bus access must alert the MCU via an interrupt. A single inter-
rupt line may serve many devices via a Device Controller. The controller must resolve
simultaneous requests for service. The interrupt line is deactivated upon transmission
of an I/O command by the servicing MCU to the interrupting device's controller. Differ-
ent interrupt lines servicing different sets of devices are subject to the priority resolu-
tion scheme built into the MCU interrupt mechanism, priority being determined by the
position of the interrupt line on the MCU. The maximum burst transfer rate over the Z
bus, based upon an MCU cycle time of 150 nsec, is 2 MHz.

Z BUS

The Z bus consists of 30 lines, 16 of which are bidirectional data lines. The remain-
ing 14 are control lines, as follows:

a. Eight Device Address Lines (bidirectional)

b. Input/Output Line (output)

c. Data/Control Line (output)

d. Continue Line (output)

e. Command Line (bidirectional)

f. Acknowledge Line (bidirectional)

g. Reject Line (input).

The Device Address Lines alert a specified device controller or channel controller
to connect to the Z-bus data lines for an information transfer.

The Input/Output Line specifies the direction of information transfer.

The Data/Control Line specifies whether the transfer will involve data or control
information. If control information is specified, an Input command will bring a status
word from the device to the MCU; an Output command will send a command word from
the MCU to the device.

The Continue Line is used to specify, where appropriate, that a device be prepared
to accept another I/O word as continuation of the present I/O.

The Command Line alerts all devices on the Z bus that an I/O command has been
put on the bus.

The Acknowledge Line is raised by a device to acknowledge to the MCU that the de-
vice has accepted the I/O command.

The Reject Line is raised by a device to notify the MCU that the device cannot ac-
cept the I/O command.

The Device Address Lines, Command Line, and Acknowledge Line take part in MCU-
to-MCU communication as well as MCU-to-device communication and are therefore
bidirectional. An MCU continually monitors the Command Line and Device Address
Lines for an I/O command directed at it by another MCU. An MCU can raise the Ac-
knowledge Line in response to an I/O command in the same manner as a device.

21



J. D. ROBERTS, JR.

MCU-Z-BUS INTERFACE

The MCU interfaces with the Z bus through its Z register and Local Store A (LSA).
The Z bus data lines input to and are driven from the Z register. The Z register must
be loaded with data or command information prior to an I/O output command. An I/O
input operation loads the Z register from the Z bus for subsequent use.

A control word must be set up in LSA prior to the I/O command. The LSA location
containing the control word is specified by the LSA Address Field, and 12 bits of the se-
lected word directly drive 12 control lines of the Z bus as shown in Fig. A2. The Ac-
knowledge Line is driven indirectly through I/O control logic. The Reject Line inputs to
the MCU Sequence Unit and causes a program jump to the Control Store location speci-
fied by the Lit field contents in the I/O command word.

CONTROL WORD IN LSA

w(D

-J

O -J
z -J 0 D~~4. 0 ~~ cc
< C z wJ, P

2 D -z > 0
0 CL < 5 W~~~L -J6 z a D °1 (J

FROM ALU

DATA SELECTOR

Z REGISTER |

DRIVERS

DATA LINES

DEVICE ADDRESS LINES

CONTINUE LINE

DATA/CONTROL LINE

INPUT/OUTPUT LINE

COMMAND LINE

ACKNOWLEDGE LINE

TO REJECT
CONTROL

REJECT LINE

Fig. A2 - MCU-to-Z-bus interface

Four bits of the command word set up in LSA do not go out over the Z bus but go to
a clock time-out counter in the MCU. These bits allow the program to specify a time in-
terval in powers of 2 from 20 to 215 clock cycles. This interval limits the time that the
MCU will wait inhibited in the I/O state for the return of an Acknowledge signal from an
addressed device. In the event of a time out, an internal interrupt is generated and the
MCU leaves the I/O state to process that interrupt.

.

_

-

-

, *

22

I



NRL REPORT 7476

UNBUFFERED I/o OPERATION

I/O operations are initiated by an I/O instruction in an MCU. Devices cannot initiate
I/O operations directly but do so by appealing to an MCU through the interrupt system.
An I/O command is specified by a code point of 7 in the command word successor field.
Prior to the I/O instruction, the I/O control word must be set up in LSA and, if the trans-
fer is to be an output, data or command information must be set up in the Z register.
Also, the programmer must specify in the LSA address field the location of the I/O con-
trol word in LSA, and the address of the Reject jump must be specified in the Lit field.

The MCU Command Register is loaded every cycle at P/4. If an I/O operation is
specified, the MCU raises an I/O Request Line to the Z-Bus Control Unit which resolves
requests for the Z bus from different MCU's. Access to the bus is granted strictly on a
first-come, first-served basis. If the Z bus is available, the MCU will receive a Z-Bus
Available Line which, combined with the I/O Request Line, initiates the I/O cycle at P/1.
Absence of the Z-Bus Available signal inhibits MCU operation until the bus becomes
available at a later cycle.

The MCU I/O cycle proceeds as follows. P/2 sets the I/O Command FF or P/3 sets
the I/O Acknowledge FF, depending on the state of the Command/Acknowledge bit in the
I/O control word read from LSA. An I/O command causes the control word drivers from
LSA to be energized, and, if the command is an output, the data drivers from the Z reg-
ister are also energized. Further clock pulses for MCU operation are suspended until
the receipt of the Acknowledge Line signal in conjunction with P/3 clears the I/O Com-
mand FF thereby de-energizing all Z-bus drivers. Simultaneously, if the I/O command
is an input, the information on the Z-bus data lines is clocked into the Z register. The
MCU then proceeds with normal operation.

If the I/O operation is an Acknowledge, the I/O Acknowledge FF is set at P/3. This
energizes a driver on the Acknowledge Line only. Simultaneously, the Z-bus data lines
are clocked into the Z register and the MCU continues with normal operation.

If the Reject Line is raised in response to an I/O Command, the MCU remains in-
hibited until the conjunction of P/1 and the Reject Line signal which clears the I/O
Command FF and clocks the contents of the CS Lit field into the CSAR. This causes the
MCU to resume normal processing at the I/O Reject jump address.

BUFFERED CHANNEL CONTROLLER

The Buffered Channel Controller can take several forms. In the SPE system a Se-
lector Channel Controller is specified as a generalized Direct Memory Access Controller.

The SCC interfaces with the Storage Control Unit (SCU), the Z bus, and up to 8 De-
vice Controllers (DC). Each DC may be attached to up to 4 SCC's.

The SCC interfaces with the Z bus to receive commands from and to transmit status
information to an MCU. The SCC, in addition to the Z-bus lines, has an interrupt line to
alert an MCU of a change in device status.

The SCC-DC interface is identical to the Z-bus interface except that the data width
is 32 lines. Eight, 16, or 32 data-line DC's may be connected to the SCC. The particular
width for an SCC-DC operation is determined by a 2-bit field (WDC) in the MCU I/O
Command to the SCC.

23



J. D. ROBERTS, JR.

The SCC contains a 32-bit assembly register at the SCC-DC interface and a 32-bit
data exchange register at the SCU-SCC interface. Two incrementing address registers
and a word counter are contained in the SCC.

If an SCC is connected to the highest priority SCU position, a transfer rate to buffer
memory of 192 mbits/sec is possible. The maximum transfer rate is dependent on the
round-trip line delay between the SCC and DC.

SCC Command and Format

The SCC Command Format includes the following fields:

1. Buffer Memory Starting Address (16 bits)

2. Word Count (12 bits)

3. Record Count (4 bits)

4. Device Number, (8 bits)

5. SCC-DC Data Width (2 bits)

6. Operation Type (2 bits)

7. Operation Code (4 bits)

8. DEVICE STARTING ADDRESS.

SCC COMMAND FORMAT

1 16 17 28 29 32

MEMORY STARTING WORD COUNT RECORD
ADDRESS COUNT

33 40 41 42 43 44 45 48 49 64

DEVICE DATA OP OPERATION DEVICE STARTING
NUMBER WIDTH TYPE CODE ADDRESS

65 80

SCC Status Information and Format

1. Next Memory Address (16 bits)

2. Word Count (12 bits-)

3. Record Count (4 bits)

4. Device Number (8 bits)

5. SCC -DC Data Width (2 bits)

6. Operation Type (2 bits)

I

24



NRL REPORT 7476

7. Operation Code (4 bits)

8. Next Device Address (16 bits)

9. Status (16 bits)

SCC STATUS FORMAT

1 16 17 28 29 32

NEXT MEMORY WORD COUNT RECORD
ADDRESS COUNT

33 40 41 42 43 44 45 48 49 64

DEVICE DATA OP OPERATION NEXT DEVICE
NUMBER WIDTH TYPE CODE ADDRESS

65 80

STATUS

25



Appendix B

A MICROPROGRAMMING LANGUAGE (AMIL) SYNTAX

(Program) = Body) (End Line)

<Body) :: = (Instruction) I (Body) (Instruction>

(Instruction) = (Label Phrase> *{ (Memory- Operation> Adder Op) (Address Adjust)

(Auxiliary Transfer> Condition Phrase) Successor)
< I/O Instruction>}* $

(Label Phrase) = (Label) I (Empty)

(Label) :: = (Letter) | <Label) (Letter) (Label) (Symbol) | (Label) (Digit>

(Letter> = AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

(Digit) ::= 0$1112 13141516171819

(Symbol):: = -/( )=1,1.

<Empty) :: = {the absence of anything}

*{ categories} * :: = {the categories inside of *{ and * can appear in any order}

(Memory Operation) :: = *{ (Buffer Read A to

*{ (Buffer Read A to

*{ (Buffer Read A to

*{ (Buffer Read A to

*{ (Buffer Read A to

*{ (Buffer Read B to

*{ (Buffer Read B to

*{(Buffer Read B to

*{(Buffer Read B to

*{ (Buffer Read B to

LSA)

LSA)

LSA

LSB)

LSB>

LSA)

LSA)

LSA)

LSB)

LSB)

(Buffer Read A to LSB)}* 

(Buffer Read B to LSB)}* 

(Buffer Write B)}* 

(Buffer Read B to LSA>}*

(Buffer Write B)}* I
(Buffer Read B to LSB)}*

(FSU Register Set)}* I
(Buffer Write A)}* I
(FSU Register Set)}* |

(Buffer Write A>}* I
*{(FSU Register Set) (Buffer Write B>}* I
OUTPUT (LSA(LS Subscript), BUF(BARA)) OUTPUT (LSB(LS

Subscript), BUF(BARB)) I
OUTPUT (LSB (LS Subscript), BUF(BARB)) OUTPUT (LSA(LS

Subscript), BUF(BARA)) I
(Empty)

26



NRL REPORT 7476

<Buffer Read A to LSA> :: = INPUT (BUF(BARA), LSA(LS Subscript)) (Empty)

(Buffer Read A to LSB> = INPUT (BUF(BARA), LSB(LS Subscript)) I (Empty)

(Buffer Read B to LSA) :: = INPUT (BUF(BARB), LSA(LS Subscript)) IEmpty)

(Buffer Read B to LSB) = INPUT (BUF(BARB), LSB (LS Subscript>) I KEmpty)

(Buffer Write A) = OUTPUT ((Buffer Write Source>, BUF(BARA)) I Empty)

(Buffer Write B) :: = OUTPUT (Buffer Write Source>, BUF(BARB)) I (Empty)

(Buffer Write Source) :: = Z I LSA (LS Subscript) I LSB (LS Subscript)

(FSU Register Set) ::= INPUT (BUF(BARA), FSDR) I <Empty>

(LS Subscript) :: = ((Register Number))

(Register Number) :: = FSU fieldI 181911011111211311415 BARA BARB

<FSUfield> ::=01112131415 1 617

(Adder Op) :: = <Destination) = Left Ihput I (Destinatiort = <Right Input) |

KDestinatior = (Left Input) (Unary Operator) I (Destination) = ZI

<Destination) = (Right Input) (Binary Operator) (Left Input) |

(Destination) = Left Input) (Binary Operator) Right Input>! (Empty>

(Left Input) :: = BARA I BARB SAR I CTR I ACSAR LSA (LS Subscript) |

LSB (LS Subscript) FSU ( FSU Field))

(nteger) :: = <Digit) < <Integer) (Digit)

(Right Input) :: = BARA I BARB I (Integer) LSB (LS Subscript) COMPi

K Integer> FSU (FSU field>) COMP2 (Integer)

(Unary Operator) :: = +1 -1 COMP I LEFT I RIGHT I CIRC

(Binary Operator) :: = + - OR I AND I XOR I EQV

(Destination) :: = (Regular Destination)

< Destination) , Regular Destination) |

(Destination) , (Auxiliary Destination)

(Regular Destination> :: = Z BARA BARB I LSA (LS Subscript> LSB (LS Subscript)

(Address Adjust) :: - (ING) I (DEC)I (INC), (DEC)I (INC), INC>

(DEC , INC) I (DEC), (DEC> ( Empty)

(INO):: = INC BARA INC BARB

(DEC) :: = DEC BARA DEC BARB

27



J. D. ROBERTS, JR.

(Auxiliary Transfer) = (Auxiliary Destination) = (Auxiliary Source) I <Empty)

(Auxiliary Source> ::= (Literal) I Z I COMPI (Integer) I COMP2 (Integer>

( Literal) :: = < Integer |<Label >

(Auxiliary Destination):: = ACSAR I SAR I CTR

(Condition Phrase) :: = IF (Not> (Condition) | (Empty >

<Not>:: = NOT I Empty>

(Condition>:: = LEAST I MOST I ADROV I CTROV I ZERO

(Successor> :: = STEP | SKIP SAVE I (Call> I INTRETI (Jump>

( Jump):: = JUMP TO (Jump Destination)

(Call) :: = CALL (Literal>

(Jump Destination> :: = 'Literal) I ACSAR I Z

(End Line) :: = END $

$ :: = {the end of instruction delimiter}

(I/O Instruction> :: = I/O ((LS Subscript), (Literal)) I (Empty)

28



Appendix C

AMIL KEY WORDS

The following is a list of key words (reserved words) which cannot be used except in
the context defined by the syntax.

AMIL Key Words and Symbols

Key Word Meaning

Registers:

LSA (BARA or Integer)

LSB (BARB or Integer)

BARA

BARB

CTR

SAR

z
INPUT

OUTPUT

FSU (integer)

FSDR

- Local Store A

- Local Store B

- Buffer Address Register A
- Buffer Address Register B
- Counter
- Shift Amount Register

- Adder/Shifter output register
- Buffer Memory Read

- Buffer Memory Write

- Field Select Unit Field Specification
- Field Select Unit Data Register

Conditions:

MOST

LEAST

ADROV

CTROV

ZERO

IF

NOT

- Most significant bit of the adder output (Z)

- Least significant bit of Z

- Adder Overflow

- Counter Overflow

- Adder output equal to ZERO

- Signals conditional instruction
- Signals testing of NOT of the condition

Adder Operations:

- Addition (Left + Right)

- Subtraction (Left - Right)

- Logical OR

29

+

OR



J. D. ROBERTS, JR.

Meaning

Adder Operations (Cont.):

- Logical AND

- Logical Exclusive Or

- Logical Equivalence

- Complement Left Input (one's complement)

- Left Input minus one (Left -1)

- Left Input plus one (Left +1)

- LEFT shift the left input by amount in SAR

- RIGHT shift the left input by amount in SAR

- CIRCular shift right the left input by SAR

- Increment the register specified (BARA or BARB)
- Decrement the register specified (BARA or BARB)
- I/O instruction occurs this cycle

Successors:

JUMP TO

JUMP TO

JUMP TO

INTRET

(integer or label)

ACSAR

z

- Execute the instruction in the next (+1) control
word (this is the default successor)

- SKIP the next instruction and execute the one
following that one

- SAVE the current address +1 in ACSAR then
STEP

- Jump to the address in LIT field and save return
address (current address +1) in ACSAR

- Jump to the address in the LIT field

- Jump to the address in ACSAR (returns)
- Jump to the address in Z (calculated addresses)

- Interrupt return

Key Symbols:

- Assignment operator (can be read as 'goes to')
- End of instruction delimiter (comments can

follow)

- Separator (between key words - not inside)

- Separator (between key words - not inside)

- Used to delimit source or destinations in buffer
memory operations; also used to delimit sub-
scripts and field i.d.'s

- Instruction continuation delimiter

Key Word

AND

XOR

EQV

COMP

-1

+1

LEFT
RIGHT

CIRC

INC

DEC

I/O

STEP

SKIP

SAVE

CALL

$

blank

( )

*

30



NRL REPORT 7476 31

Key Word Meaning

Key Symbols (Cont.):

- Label delimiter
END - End of program delimiter

COMPI - Take the one's complement of the literal
which follows

COMP2 - Take the two's complement of the literal
which follows



Appendix D

AMIL SAMPLE PROGRAMS AND LISTINGS

This section contains a sample problem, the solution programmed in AMIL, and the
listing of the AMIL translator's output for the program.

Also included is another translator run, but not of a program that performs any
function. The program is simply an exercise of the translator and serves as a good
representation of the many different forms of AMIL instructions.

SAMPLE PROGRAM IN AMIL

Problem: 1600 data points have been collected and put into Buffer Memory. There
are 40 samples from each of 40 channels. The points are in time order
as illustrated below:

Input

Memory location(i)
(i+l)

Sample from
Channel(1) Time(1)
Channel(2) Time(l)

Channel(40) Time(1)
Channel(l) Time(2)

(i+1 599) Channel(40) time(40)

The problem is to demultiplex these samples into channel order so
signal processing (ft, filters, etc.) can proceed. The desired output is
in the following form:

Output

Memory location(j)
(j+1)

Channel(1) Time(1)
Channel(1) Time(2)

(j+39) Channel(1) Time(40)
(j+40) Channel(2) time(1)

(j+1599) Channel(40) time(40)

The input is in one Buffer Memory and the output will be into another
Buffer Memory.

32



NRL REPORT 7476

The program to solve this problem follows:

Number of
Line No. Executions AMIL Instructions

1 1 BARA = 1000 $ Location 500 of buffer memory 0

2 1 BARB = 10192 $ Location 1000 of buffer memory 1

3 1 LSB(1),CTR = 40 COMP1, SAVE $

4 1600 INPUT(BUF(BARA),LSA(1)), OUTPUT(LSA(1),BUF(BARB)), *
INC BARB, BARA = BARA + 40, IF NOT CTROV *
(Then) JUMP TO ACSAR $

5 40 (Else) LSB(1) = LSB(1) + 1, CTR = COMP1 40, STEP $

6 40 BARA = BARA - 1599, IF NOT ADROV JUMP TO ACSAR $

7 1 (Else) END $

Total = 1684

Please note that it took the MCU only 1684 clocks (1 clock per instruction execution)
to do a problem involving 3200 memory transfers. The key to this almost real-time rate
is in line number 4, which demonstrates the large amount of parallelism available in the
MCU. In this one instruction a new sample is read from Buffer Memory A into Local
Store Register 1 while the previous value in LSA(1) is written into Buffer Memory B.
Also occurring is the increment of BARA, the address register associated with Memory
A, by 40 at a time to get from channel to channel for this time sample. Similarly BARB
is being incremented by 1 to put the demultiplexed samples in channel order. Finally,
the counter (CTR) is being checked for overflow which would cause the Else condition to
be executed (i.e., line 5). Checking of the CTR causes it to be incremented. If no over-
flow occurred then the combination of the SAVE in line 3 and the JUMP in line 4 will
cause line 4 to be executed repeatedly until the overflow occurs (i.e., 40 times). Line 5
and 6 set up the next channel pass addresses and jump back to line 4 to demultiplex sam-
ples from the next channel. Line 6 also checks for completion of the entire task and line
5 resets the CTR.

An actual computer run of the same program follows. This is a copy of the listing.

72/06/28. 10.48.30.
PIROGRAM All IL

PLEASE ENTER TRANSLATION CCNTRCL PARAMETERS

INPUT FILE NAME IS
? ULTPLX

OUTPUT FILE NAME IS
? TEMP

SOURCE LISTING DESIRED
? YES

OBJECT LISTING DESIRED
? YES

33



J. D. ROBERTS, JR.

J,,W J.0 LI S I G F ZLL," c2J'

L4LAiJ 101_2 .
L : (3 1 ), CT. C 1 40 .I 4a., VA ! SI \, i Cl> U ! ; * A ZA,),Lij,,C 1 ) ) 5 £UTI)J (L A( 1c.4 t)J 3LiI'(B. 3A ) ),

DA,.A = 231AiA + 40., I N ;, i".C 'V J U 2v fZ AC'S.AC ,
'C IB ) = L£;S 1) + 1, C1.h = C Ac;;1D LO, 2f--H

j 3.... D = . A - 1699, IF AD;V. JJI I C CA5
E', ID J'

LAE L : L.II TIA =

G15jl'i± LI STING FLL!zS

I111C 73•IZ 3 "'

Sj

0. S ECC,-NDS

FI 1 LD (1-17)
AODD<. 1 2 3 4 5 6 7 3 9 10 11 12 13 1I 15 16

1 0 0 0 0 3 0 0 0 0 1 0 6 0 0 0 02 0 0 0 0 0 3 0 0 0 1 0 8 0 0 0 0
3 0 0 2 6 0 0 0 3 0 1 0 s 0 0 0 1
4I 4 1 5 0 3 2 1 0 2 1 3 1 1 0 1 0
5 0 0 0 5 O 0 0 3 0 1 41 0 O 1 0 1
6 3 1 5 0 3 0 0 0 0 1 8 2 0 0 0 0)

17

1000
10192

6 5495
40

65I9 5
1 9

N'C; G ':*;ILATI CN ! i G; .'JCZUNT iI;CD

; Lav A7 v JO!N Il =
--W.

. 3 6 6s'iC :CD'1DS

The following is a sample program which does nothing except illustrate many of the
formats which are legal in AMIL.

- '" i -AAIL

I'LEA E !ENTEi TAN SLATI ON CSNTCiC'L ijA.NA 1ETE;1S

INPUT FILE NAANE IS
? Ai1ILIN

*CUTPUT FILE NAAE IS
? TEilP

SOWZCE LISTING DE:illiED
? YES

CD3JECT LISTING DESIriED
? YES

_'U;'Ci; LISTING FLLr,!CJS

6A:s = LSA7) + LSDE(S) S
_'UTiU''tCLSA(7),BUFCL3A:'A)), LSA(3) = LS3(7) ZD DA. S
GU'T.'UTCLS2Bc;),13UFCL3AjA)), LSA(12) = LSZAC12) E9V FSU(5) S

CUTUT(Z. BUF(BARaA)). LSE3,(15) = SU(5) + 7 
LSS(6) = 15 + FSUC6) 
E3A;IA = BAiRA Cii LSi3C5) S
BARA = BARA + LSAC 10) 

INC ARA, INC 3ARD S
INC BARA.4 DC BAB S

INC BAiRA S
INC BRB S

34



NRL REPORT 7476

DEC ARA S
DEC BAR S

DEC ARAv DEC A R13 
D£C E:3ARDA , INC A,,,13 
Lw>3(2),CT., LSA(8)SA SAr3 = LSA(9) - 34 S
Di;A2A,AB3 = BA.A - 6i, CGTf = 6'i, 3iKIP S
S3AQJS,3.ARAS;AR LSE3(3SAS3) + FLU( 5) 
L3,A(7),.ACSAR = 563 S
IF ADROYCV JU.Ml? TO 3 L3AC7 ) CT1 = LSAC4) /•'R LSB(5) 3
Cli = 99, LSA(1),L'SU1) = L.S(6) S

.4 = GLASEL S
.LABEL S IP SA = LAUEL. S
SA. = CF 6 5

CT -i = 256 S
IF ZO SAI = LAf:JL1 IN'fREL INC DAl"A. IC D:iq S-
ACSAi = CAl 65532 SAVE S
.LABEL3 OUTUTCL \(7)SUFBA;i3)) JUMP TO LABELS S
CT., = LASEL3 
O'UrL;A(O), SwF(13AIA) ) 'JUTPiT(L';J3( 7), 13U'BA;,3) ) I~r~ SE 
INPUT(BUF(CBAiRA), FSDR) IN1 UTCSUF(SA3)L3A(9)) STEP S

INPLJT(.UF'CSARA),LSA(7)) CUTPUTCL 3C/4),L3UF'ARE)) 9-•IP $
LSA(O) = FSU(5) + LC.(3) IF CTIRGV JUM T ACSAiR 3

INPIJT(BUF(BARA),LSA(3)) L(9) - LSA(7) + 55 . INC K.SAkSL 3
LSA(7) = FSU(3) OiR LSB(5), JP TO Z s

CTH CIOVll:)l 24 
CT -f CCMW12 24 S

.= LSS(3) CP S
Z = CS C0351 S

J~r =6 S
.LADEL2 INUT3UF(BAA)FSD.<) BJI-JTCE, UF(DA.s.3)) JUA T .;
INiDUIf(UF(3AA)L6A(3)) , LSB(9) = LSA(7) + 55 , INC DAik fS
LS3A( 1) = LSSC(9) IF V1MST JUMi' fTB LABEEL5 S
3AAjVA = LSA( 12) Ck LSl9(9), IF EI CALL S
LSB(C) = LSS7) - LSA(3) 

LSB(8) = LSA(3) - LS3(7) S
3AL = ARA - 6 
LSBCL33Ah.B) = SAkA + 99 
IF LEAST SAVE, LSA(3) = LSACS) +1 
IF NOT LEAST SAVE, LSA(8) = LSA(8) -1 S
BARB = LSA(4) X, BARS1 S
LSB(O) = LS3(O) r SIGHTl THIS IS I RTIGHnT SHIFT OF LSB(.B)

LSB(15) = 35 
BA,-F = BARB + 1267 
BA.;A = BA.eRWA + 2 S
BARB = BARA S
LSB7) = CTR S
LSAC6) = SAI C' S

LSI3(3A]S- 3) = ACSAR S
LSA(BAA) = BAi S
I.NHUT(CJF(3A)LSD(5)) S

IiNPLJT(BUF(BAR-'A),LSiB(3)),o 3UZrrUlT(LSAC 5)> BUF(f-iE3))
LSA(8) = 12 + LSB3(14) INC UARAP IC DA.23 ACŽSARI = 12 S

LSA7) = LSA(15) CILOC JUM? TO LABEL3 S

= LSA(9) LEFT S
= LSA(S) AND LSD(4) S

.LABEL5 SAR = LABELS S
.NOLABEL LSA(BARA) = LSS(BAiHB) + 64 S

IF NOT ADROV LSA(15) = LSA(9) XOR LSB(6) JUMP TO 2B S
END S

35



J. D. ROBERTS, JR.

The following is the translator's object listing for the above program.

LAW.EL ;'zEzSDLUTICN IoA = .0 '2 SELC;'ND

CUTPUl' LISTING FLLc-.S
FIELDS( 1-17)

ADD,.. 1 2 3 A 5 6 7 t3 9 10 11 12 13 14 15 16 17
_- -_- - _- - _- - _ - - _- - _- -_ - - _- - _- -_- -_- -_- -_- -_- - _- - _

0 000 3 0 000 0 000 0 0 30 10 000 0 0 30 30 000 0 0 0 3 00 00 0 0 0 03 0i 000 3 0 00 0 000 3 0 000 
0 000 2 2 000 0 000 2 1 000 0 00 2 2 0 000 0 000 0 2 00 00 00 1 0 I 00 0
0 00 0 q I 000 0 00 1 1 00 0
0 000 1 2 000 

0 00 6 3 3 33 0
0 01 5 3 3 000 
0 00 4 3 3 000 0 00 2 0 0 30 03 04 6 0 0 30 00 00 5 0 0 33 00 00 3 0 0 000 0 01 3 0 0 000 0 00 3 0 0 000 0 00 5 0 0 000 
5 07 3 2 2 000 0 02 1 0 0 000 0 040 0 0 00 20 00 5 0 0 00 00 07 0 0 0 00 70 000 0 0 20 0
0 0 1 0 0 0 1 0 44 059 0 0 30 00 000 0 2 13 00 06 0 0 0 30 00 00 5 0 0 00 0 00 0 0 o 000 0 00 0 0 000 0 00 0 0 000 0 00 3 0 0 000 0 06 0 0 0 000 0 000 0 2 13 01 04 0 0 0 30 05 03 0 3 0 00 00 000 0 0 03 00 000 0 0 0 3 00 000 0 3 000 0 000 0 0 0 3 02 02 0 o 6 30 02 12 0 0 0 30 00 000 0 3 000 
o o o o o 0 3 00 000 0 0 0 3 00 000 0 3 000 

1 3 1 7
1 6 3 7
5 1 6 12
5 12 1 0
6 12 1 0
1 7 3 0
1 9 1 101 0 0 01 0 0 01 0 001 0 0 01 0 0 01 0 0 0
1 0 0 01 0 0 0
1 0 2 9
1 8 2 0
5 5 1 0
1 B 0
1 3 11 4
1 4 6 01 0 0 01 0 0 010 0 00 01 0 0 01 0 0 0
1 o 0 71 0 0 01 00 0 0 0 0 01 0 0 0

,5 s1 0
10o 1 7

3 5 1 01 0 0 01 0 0 0
1 4 7 0
1 13 7 01 0 0 00 0 0 0
1 0 1 7
1 4 6 0
1 3 3 12
1 3 2 3
1 3 2 3
1 8 2 0
1 8 10 
1 0 4 8
1 0 5 8
1 2 1 1 1
1 4 14 0
1 0 8 0
1 10 1 0

1
2
J

j

7
8
9

10
1 1
12
13
1 1
I 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4 4
45
46
47
40
49
50
51
52
53
54

8 0 0
7 8 0
3 12 0
0 0 150 0 6
5 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 00 0 0
0 0 0
0 0 0
0 5 2
0 0 0
0 0 00 7 0
5 7 0
6 1 1
0 0 0
0 0 0
0 0 00 0 0
0 0 0
0 0 00 0 0
0 0 0
7 0 0
0 9 0
4 7 080 0 

0 3 9
5 7 00 0 00 00 3 0 0
0 0 0
0 0 0
0 0 0
0 3 9
9 1 0
9 0 0
7 0 8
7 0 8
0 0 0
0 0 0
0 8 0
0 80 
0 0 0
0 0 0
0 0 15
0 0 0

0
.9
0

7
15

0

0
0
0
0
0
0
0
0

3 4

0
563

34
99
67
4,1

6 5529

23
3

66
28

0
0
0
0

55
0

65511
65512

0
0

0
55
66

0
0
0

26
99

0
0
0
0

3 5
1267

36



Appendix E

AMIL TRANSLATOR

Two sample runs of the AMIL translator have already been given. To help under-
stand these outputs more fully, a brief explanation follows.

The AMIL translator is written in KRONOS 2.0 FORTRAN to run on the Control Data
KRONOS time sharing service. To translate an AM[L program it must have been created
and saved in a permanent file. The name of this file is the proper response to the first
question the translator asks,

"INPUT FILE NAME IS".

The translator proceeds to read in the file and produce the bit patterns for each instruc-
tion. These patterns are stored in another file whose name should be given in response
to the translator's second question,

"OUTPUT FILE NAME IS".

The next two questions ask whether the "SOURCE" (input) file or "OBJECT" (output)
file should be listed:

"SOURCE LISTING DESIRED"

"OBJECT LISTING DESIRED"

The only allowable responses are "YES" or "NO." Any other response causes the
question to be repeated (up to three times). In both examples the reply was "yes" and
the listings are included.

If during translation syntax errors are encountered an error message is printed out
along with the instruction. AMIL can respond with one of 42 error messages. These
messages are listed below.

ERROR - MISSING ) TO CLOSE INPUT R OUTPUT STAT.
ERROR - DUPLICATE USE OF LIT FIELD AT ADDR. =
ERROR - LABEL STARTS WITH ILLEGAL CHARACTER
ERROR - MISSING AFTER INPUT R UTPUT
ERROR - BUFFER READA OR READB SPECIFIED TICE
ERROR - ILLEGAL DESTINATION FOR BUFFER READ
ERROR - ILLEGAL COMI3INATICN OF BUiFE- UTPQUTS
ERROR - ILLEGAL ADDRESS SELECT FOR UTPUT
ERROR - MISSING AFTER SOURCE FOR OUTPUT OR INPUT

38



NRL REPORT 7476

55 0 ( 0 0 3 0
56 0 0 0 0 ( 3
57 0 0 0 0 0 0
53 O 0 0 ) 0 0
59 0 0 0 0 U 0
60 O 0 0 U a 0
61 0 0 0 0 0 0
6f,. 0 0 0 1 2 2
63 0 0 4 0 0 0
6 4 0 0 0 0 0 0
6 5 0 0 0 0 0 O
66 0 0 0 3 0 0
67 0 0 U 0 0 0
6 t) 3 1 4 0 0 0

C Zl l I LAI. 1' I _\ 'f I: IEL =
LNID .

0 00
0 U 0
0 30
3 0 O
0 30
3 000 20
3 12
3 00 00
0 00
o 0 0
3 00
3 00

I 1 0 f ) 0
1 8 6 0 0 0 (9
1 13 6 0 0 c 7
1 15 7 0 0 6 0
1 1 6 0 0 0 U
1 10 6 0 0 0 
1 0 0 0 00 5
1 /4 1 5 14 • 3
1 0 1 5 1 5 0 7 0
1 0 1 3 9 U 0 0
1 3 10 4 0 (
1 0 0 0 0 0 0
1 4; 1 fD 0 0 0 0
1 3 11 9 6 15 0

3.23 .' C''t N D

37

I

0
0
0
0
. .

0
4.

. .-

NC)' -I IL U C ilS ENO C U,,J-f



NRL REPORT 7476 39

- ILLEGAL , IIE CLLZWING INC
ElXkc ,; - BRi-A USED TICE AS A DESTINATION
E1%RROR; - L3AI`!t USED i:.ICE AS A DESTINATION
ERROR - DuPl'LICATE AXILLAPNY TANSFER-
EtWiRklf< - MISSING = IN AUd•ILLARY TANSFER
Ekkf - ILLEGAL SOU.RCE F AUXILLARY TRANSFEi
'XhG - LABEL LONGER THAN NINE CHARACTERS
RROR; - UNRECCGN £I6ABLE STATEMENT

ER O r_ Z- ilISSING = IN ADDER PEi"AfTIN
EiliC8 - ILLEGAL OPE;AND IN ADDER OpE-RATIC\
ERROi - ILLEGAL INPUT OPERAND COMBINATION FOR'ADDER,

t tOC '' - UNKN'GO.jN ADDER OPERATOR
F-iWO - ILL EGAL CCNDITICI
ER 25ix - 1ISSING ( AFTER FSU

- FSU SUBSCRIPT GREATER THAN 7
Ei<.ORv - ILLEGAL SOURCE FOR FSDR LAD
EiRCR - ILLEGAL SURCE FOR UTPUT

- ILLEGAL SOURCE FOR INPUT I /C INSTR.
- %1ISSING ) AFTER FSU FIELD ID

'Ei4R-I' - ILLEGAL OR4AT FOR JUMP SUCCESSOR
ERR - DUPLICATE USE F FSJ R SDR.
EiRcOR - INTEGEk ;1ORE T'HAN 5 DIGITS LCNG
ERRi'COR - Tlv DIFFERENT LITERALS SPECIFIED
ERROR - IiNfE GER LARGER THAN 65535

:.;5 i - MlISSING OR * AT END. OF TIS INSTRUCTION

E.R iRRs --N GEATER TAN IN SUBROUTINE BUILD
EjRRR - UNABLE TO LCATE
EsCR - ILLEGAL PLACEMENT 'F * OR 
ERROR - SAME L.S. USED TICE AS SOURCE OR DEST.
ERHOR - MISSING ( AFTER LS
E:RCR - ILLEGAL LOCAL STOi-'E SUBSCRIPT
ERR;ORS - MISSING ) AFTER{ LOCAL STORE SUBSCRIPT
ERROR - LOCAL STORE SUBSCRIP'T IS TOO LARGE





Security Classification

14. I LINK A LINK a LINK C

IKEYLWRDSIRLE I ROLE I WTROLF WT

Microprogramming
Programming language
Micro-translator
Signal processing
All Applications Digital Computer

D D 1NOV 65 1473 (BACK)

(PAGE 2)
42

Security Classification



Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overatl report is classified)

I. ORIGINA TNG ACTIVI TY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Naval Research Laboratory Unclassified
Washington, D.C. 20390 2b. GROUP

3. REPORT TITLE

MICROPROGRAMMED CONTROL UNIT (MCU) PROGRAMMING REFERENCE MANUAL

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
An interim report on a continuing problem.

5. AUTHORIS )(First name, middle nitial, last name)

John D. Roberts, Jr.

6. REPORT DATE 7n. TOTAL NO. OF PAGES 7b. NO. OF REFS

August 15, 1972 45
Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERCSI

NRL Problem B02-06
b. PROJECT NO. NRL Report 7476

C. 9b. OTHER REPORT NO(SI (Any othernumbers thatmay be assignedthis report)

d.
10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Department of the Navy (Naval Air Systems
Command and Naval Electronics Systems
Command), Washington, D.C. 20360

13.. AE U5IR AC 

The Microprogrammed Control Unit (MCU) is a high-speed, user-microprogrammable,
executive, input-output processor and interrupt handler for the NRL Signal Processing Ele-
ment (SPE), a part of the All Applications Digital Computer (AADC).

This report describes the MCU architecture, a new programming language (AMIL), and
its translator. AMIL (A MIcroprogramming Language) is a FORTRAN-like language which
allows MCU users to write microprograms in a convenient format instead of binary bit pat-
terns. The AMIL translator converts AMIL programs into the microinstruction bit patterns
which the MCU will execute. This program marks the start of MCU software development.

D D FORM 1473
S/N 0101-807-6801

(PAGE 1)
41

Security Classification


